Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[triaquahexa- μ-cyanido-terbium(III)trisilver(I)]: a 4f-4d bimetallic coordination polymer

Katrina Kalachnikova, ${ }^{\text {a }}$ Zerihun Assefa ${ }^{\text {b }}$ and Richard E. Sykora ${ }^{\text {a* }}$

${ }^{\text {a }}$ Department of Chemistry, University of South Alabama, Mobile, AL 36688-0002, USA, and ${ }^{\text {b }}$ Chemistry Department, North Carolina A\&T State University, Greensboro, NC 27411, USA
Correspondence e-mail: rsykora@jaguar1.usouthal.edu

Received 30 May 2007; accepted 13 June 2007

Key indicators: single-crystal X-ray study; $T=290 \mathrm{~K}$; mean $\sigma(\mathrm{N}-\mathrm{C})=0.006 \AA$; R factor $=0.019 ; w R$ factor $=0.047$; data-to-parameter ratio $=10.8$.

The title compound, $\left[\mathrm{Ag}_{3} \mathrm{~Tb}(\mathrm{CN})_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{n}$, consists of hydrated Tb^{3+} cations that are linked with dicyanoargentate anions into a three-dimensional network. The resultant $\mathrm{TbN}_{6} \mathrm{O}_{3}$ coordination polyhedra have a tricapped trigonal prismatic geometry. Six N atoms from the dicyanoargentate groups form the corners of the trigonal prisms, while the O atoms of three water molecules reside in the capping positions to complete the coordination environment around terbium. Argentophilic interactions give rise to a two-dimensional network of Ag atoms. All of the atoms in the structure are located on special crystallographic positions. Only one unique atom of each type is found in the structure. The site symmetry of each is: $\mathrm{Tb}(\overline{6} 2 m), \mathrm{Ag}(2 / m), \mathrm{C}(m), \mathrm{N}(m), \mathrm{O}(m 2 m)$ and H (m).

Related literature

The title compound is isostructural with the previously reported gold analog, $\mathrm{Tb}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (Tanner et al., 2005). These compounds adopt the $\mathrm{Eu}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ structure type (Assefa et al., 1994, 1995), which has also been reported for several other tris(dicyanoargentate)lanthanide trihydrates or tris(dicyanoaurate)lanthanide trihydrates (Colis, Larochelle et al., 2005). Detailed spectroscopic properties have been reported for the title compound (RawashdehOmary et al., 2000; Tanner et al., 2005). For related literature, see: Ahrland et al. (1985); Colis, Staples et al. (2005).

Experimental

Crystal data

$\left[\mathrm{Ag}_{3} \mathrm{~Tb}(\mathrm{CN})_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$
$M_{r}=692.70$
Hexagonal, $\mathrm{P6}_{3} / \mathrm{mcm}$
$a=6.6692$ (11) \AA
$c=18.371$ (2) \AA
$V=707.63(19) \AA^{3}$

Data collection

Enraf-Nonius CAD-4
diffractometer
Absorption correction: analytical (XPREP; Bruker, 2000)
$T_{\text {min }}=0.320, T_{\text {max }}=0.438$
849 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.047$
$S=1.14$
260 reflections
$Z=2$
Mo $K \alpha$ radiation
$\mu=9.04 \mathrm{~mm}^{-1}$
$T=290$ (2) K
$0.29 \times 0.14 \times 0.10 \mathrm{~mm}$

260 independent reflections
226 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.056$
3 standard reflections frequency: 120 min intensity decay: 3%

24 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.68 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\min }=-0.51 \mathrm{e}^{-3}$

Data collection: CAD-4-PC (Enraf-Nonius, 1993); cell refinement: $C A D-4-P C$; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: publCIF (Westrip, 2007).

The authors gladly acknowledge the Department of Energy and Oak Ridge National Laboratory for the loan of an EnrafNonius CAD-4 X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2030).

References

Ahrland, S., Norén, B. \& Oskarsson, Å. (1985). Inorg. Chem. 25, 1330-1333.
Assefa, Z., Shankle, G., Patterson, H. H. \& Reynolds, R. (1994). Inorg. Chem. 33, 2187-2195.
Assefa, Z., Staples, R. J., Fackler, J. P., Patterson, H. H. \& Shankle, G. (1995). Acta Cryst. C51, 2527-2529.
Bruker (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2000). XPREP. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Colis, J. C. F., Larochelle, C., Staples, R., Herbst-Irmer, R. \& Patterson, H. (2005). Dalton Trans. pp. 675-679.

Colis, J. C. F., Staples, R., Tripp, C., Labrecque, D. \& Patterson, H. (2005). J. Phys. Chem. B, 109, 102-109.
Enraf-Nonius (1993). CAD-4-PC Software. Version 1.2. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Rawashdeh-Omary, M. A., Larochelle, C. L. \& Patterson, H. H. (2000). Inorg. Chem. 39, 4527-4534.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Tanner, P. A., Zhou, X., Wong, W.-T., Kratzer, C. \& Yersin, H. (2005). J. Phys. Chem. B, 109, 13083-13090.
Westrip, S. P. (2007). publCIF. In preparation.

supplementary materials

Acta Cryst. (2007). E63, i162 [doi:10.1107/S1600536807029133]

Poly[triaquahexa- μ-cyanido-terbium(III)trisilver(I)]: a $4 f$ - $\mathbf{d} \boldsymbol{d}$ bimetallic coordination polymer

K. Kalachnikova, Z. Assefa and R. E. Sykora

Comment

Compounds containing lanthanide ions and dicyanometallate (e.g. dicyanoargentate, dicyanoaurate) anions have been extensively studied in recent years due to the interesting structural and optical properties of these systems (Tanner et al., 2005; Colis \& Staples et al., 2005). It has been shown in both $\mathrm{Tb}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Tb}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ that donoracceptor energy transfer processes occur. In these systems, exclusive excitation of the donor dicyanoaurate or dicyanoargentate moieties leads to sensitized luminescence from the acceptor Tb (III) (Rawashdeh-Omary et al., 2000; Tanner et al., 2005). The sensitized luminescence is reportedly much stronger in $\mathrm{Tb}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ than in $\mathrm{Tb}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ due to a larger spectral overlap between the $\left[\mathrm{Ag}(\mathrm{CN})_{2}{ }^{-}\right]$emission and the $\mathrm{Tb}(\mathrm{III})$ absorption (Rawashdeh-Omary et al., 2000). However, while the structure of $\mathrm{Tb}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ has been previously reported (Tanner et al., 2005), the structure of $\mathrm{Tb}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ has not. For this reason, a structural study of the title compound was undertaken.

Fig. 1 shows the coordination geometry around the terbium atom and the atomic labeling scheme. The environment of the Tb ion consists of six N -bound CN^{-}groups coordinated approximately end-on, resulting in a trigonal prismatic arrangement. Only the N atoms are shown in Fig. 1, but the overall cyanide coordination is clearly evident in the packing diagram shown in Fig. 2. Three water molecules cap the three rectangular faces of the prism. The result is a tricapped trigonal prismatic coordination geometry around the Tb^{3+} with a $D_{3 h}$ site symmetry. The three O atoms of the water molecules are coplanar with the Tb atom, by symmetry. Each silver atom is coordinated to the carbon atoms of two cyanide anions, resulting in nearly linear $\operatorname{Ag}(\mathrm{CN})_{2}{ }^{-}$units as found in other dicyanoargentates. This arrangement is shown in the packing diagram of Fig. 2. In the structure, the $\left[\mathrm{TbN}_{6} \mathrm{O}_{3}\right]$ polyhedra are arranged in layers found in the crystallographic $a b$ plane. As shown in Fig. 2, these alternating layers of Ag atoms and Tb polyhedra are bridged with cyanide linkages resulting in an overall three-dimensional framework. The silver atoms form a Kagomé lattice, also found in the $a b$ plane, that separates the layers of terbium polyhedra. Every Ag atom has four nearest Ag neighbors, with a uniform $\mathrm{Ag} \cdots \mathrm{Ag}$ separation of 3.3346 (5) \AA. The overall structural features are unchanged in the title compound as compared with the isostructural $\mathrm{Tb}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$. The title compound contains a larger cell volume than $\mathrm{Tb}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ due largely to the greater $\mathrm{Ag} \cdots \mathrm{Ag}$ separation as compared to the shorter $\mathrm{Au} \cdots \mathrm{Au}$ separation of 3.31 (1) \AA (Tanner et al., 2005). This is consistent with the well established observation that aurophilic interactions are stronger than argentophilic interactions (Ahrland et al., 1985).

Experimental

$\mathrm{Tb}\left(\mathrm{NO}_{3}\right)_{3} \cdot \mathrm{xH}_{2} \mathrm{O}(99.9 \%)$ and $\mathrm{KAg}(\mathrm{CN})_{2}(99.9 \%)$ were purchased from Alfa Aesar. An aqueous Tb^{3+} solution $(0.13 \mathrm{M})$ was prepared from the $\mathrm{Tb}\left(\mathrm{NO}_{3}\right)_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$. The reaction involved placing a sealed quartz tube containing 0.10 ml of the aqueous Tb^{3+} solution and $7.7 \mathrm{mg}(39 \mu \mathrm{~mol})$ of the $\mathrm{KAg}(\mathrm{CN})_{2}$ into a preheated box oven. The tube was left in the oven at 393 K for 3 d. Colorless single crystals of $\mathrm{Tb}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ in the form of hexagonal plates were isolated as the sole solid product contained in a colorless mother liquor. The observed yield was 51%.

supplementary materials

Refinement

The unique H -atom in the structure was located in a Fourier difference map and then fixed at a distance of $0.85 \AA$ from the oxygen atom. The coordinates of the H atom were restrained to ensure a reasonable geometry for the water molecule and $U_{\text {iso }}(\mathrm{H})$ was fixed at $1.2 U_{\text {eq }}(\mathrm{O})$.

Figures

Fig. 1. An illustration of the coordination environment around the terbium and silver atoms. 50% thermal ellipsoids are shown.

Fig. 2. A view of the packing diagram of \mathbf{I} viewed perpendicular to the c axis. Hydrogen atoms not shown.

Poly[triaquahexa- μ-cyanido-terbium(III)trisilver(I)]

Crystal data

$\left[\mathrm{Ag}_{3} \mathrm{~Tb}(\mathrm{CN})_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$
$M_{r}=692.70$
Hexagonal, $P 6_{3} / \mathrm{mcm}$
Hall symbol: -P 6c 2
$a=6.6692$ (11) \AA
$b=6.6692$ (11) \AA
$c=18.371(2) \AA$
$\alpha=90^{\circ}$
$\beta=90^{\circ}$
$\gamma=120^{\circ}$
$V=707.63(19) \AA^{3}$

$$
V=707.63(19) \AA^{3}
$$

Data collection

Enraf-Nonius CAD-4
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=290(2) \mathrm{K}$
$\theta / 2 \theta$ scans
Absorption correction: analytical
(XPREP; Bruker, 2000)

$$
\begin{aligned}
& Z=2 \\
& F_{000}=628 \\
& D_{\mathrm{x}}=3.251 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo Ka radiation } \\
& \lambda=0.71073 \AA \\
& \text { Cell parameters from } 25 \text { reflections } \\
& \theta=8.3-21.1^{\circ} \\
& \mu=9.04 \mathrm{~mm}^{-1} \\
& T=290(2) \mathrm{K} \\
& \text { Prism, colorless } \\
& 0.29 \times 0.14 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& R_{\mathrm{int}}=0.056 \\
& \theta_{\max }=25.3^{\circ} \\
& \theta_{\min }=2.2^{\circ} \\
& h=0 \rightarrow 6 \\
& k=0 \rightarrow 6 \\
& l=-22 \rightarrow 22
\end{aligned}
$$

$T_{\min }=0.320, T_{\max }=0.438$
849 measured reflections
260 independent reflections
226 reflections with $I>2 \sigma(I)$

3 standard reflections
every 120 min
intensity decay: 3\%

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.047$
$S=1.14$
260 reflections

24 parameters

Hydrogen site location: difference Fourier map
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0134 P)^{2}+0.104 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2{F_{\mathrm{c}}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.68 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.51$ e \AA^{-3}
Extinction correction: SHELXL97,
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Primary atom site location: structure-invariant direct methods

Extinction coefficient: 0.0152 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Tb1	1.0000	0.0000	0.2500	$0.0141(3)$
Ag 1	0.5000	0.0000	0.0000	$0.0364(3)$
N 1	$0.7414(6)$	0.0000	$0.1502(2)$	$0.0287(9)$
C 1	$0.6558(8)$	0.0000	$0.0970(2)$	$0.0277(11)$
O 1	$1.3630(8)$	0.0000	0.2500	$0.0471(16)$
H 1	1.4199	0.0000	0.2086	0.057^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Tb 1	$0.0161(3)$	$0.0161(3)$	$0.0101(3)$	$0.00803(15)$	0.000	0.000
Ag 1	$0.0416(4)$	$0.0406(5)$	$0.0265(3)$	$0.0203(2)$	$-0.01559(18)$	0.000

N 1	$0.0273(16)$	$0.038(3)$	$0.0243(18)$	$0.0190(13)$	$-0.0030(15)$	0.000
C1	$0.0262(18)$	$0.033(3)$	$0.026(2)$	$0.0166(15)$	$-0.0024(18)$	0.000
O1	$0.041(2)$	$0.097(5)$	$0.022(2)$	$0.049(3)$	0.000	0.000

Geometric parameters (\AA, ${ }^{\circ}$)

Tb1-O1	2.421 (5)	Ag1-Ag1 ${ }^{\text {i }}$	3.3346 (5)
Tb1-N1	2.517 (4)	N1-C1	1.132 (6)
Ag1-C1	2.063 (5)	$\mathrm{O} 1-\mathrm{H} 1$	0.8500
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Tb} 1-\mathrm{O} 1^{\text {iii }}$	120.000 (1)	$\mathrm{N} 1^{\mathrm{ii}}-\mathrm{Tb} 1-\mathrm{N} 1^{\text {v }}$	139.92 (7)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Tb} 1-\mathrm{O} 1$	120.000 (1)	$\mathrm{O} 1^{\text {ii }}-\mathrm{Tb} 1-\mathrm{N} 1^{\text {vi }}$	69.96 (3)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Tb} 1-\mathrm{O} 1$	120.0	$\mathrm{O} 1^{\text {iii }}-\mathrm{Tb} 1-\mathrm{N} 1^{\text {vi }}$	133.26 (9)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Tb} 1-\mathrm{N} 1^{\text {iv }}$	133.26 (9)	$\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{N} 1^{\text {vi }}$	69.96 (3)
$\mathrm{O} 1^{\text {iiii }}-\mathrm{Tb} 1-\mathrm{N} 1^{\text {iv }}$	69.96 (3)	$\mathrm{N} 1^{\text {iv }}-\mathrm{Tb} 1-\mathrm{N} 1^{\text {vi }}$	72.81 (14)
$\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{N} 1^{\text {iv }}$	69.96 (3)	$\mathrm{N} 1-\mathrm{Tb} 1-\mathrm{N} 1{ }^{\text {vi }}$	139.92 (7)
$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Tb} 1-\mathrm{N} 1$	69.96 (3)	$\mathrm{N} 1{ }^{\text {iii }}$ - $\mathrm{Tb} 1-\mathrm{N} 1^{\text {vi }}$	93.48 (18)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Tb} 1-\mathrm{N} 1$	69.96 (3)	$\mathrm{N} 1{ }^{\text {ii }}-\mathrm{Tb} 1-\mathrm{N} 1^{\text {vi }}$	139.92 (7)
$\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{N} 1$	133.26 (9)	$\mathrm{N} 1{ }^{\mathrm{v}}$-Tb1-N1 ${ }^{\text {vi }}$	72.81 (14)
$\mathrm{N} 1{ }^{\text {iv }}-\mathrm{Tb} 1-\mathrm{N} 1$	139.92 (7)	C1—Ag1-C1 ${ }^{\text {vii }}$	180.00 (12)
$\mathrm{O} 1^{\text {ii }}-\mathrm{Tb} 1-\mathrm{N} 1^{\text {iii }}$	69.96 (3)	C1—Ag1—Ag1 ${ }^{\text {i }}$	104.59 (7)
$\mathrm{O} 1^{\text {iiii }}$ - $\mathrm{Tb} 1-\mathrm{N} 1^{\text {iii }}$	133.26 (9)	$\mathrm{C} 1{ }^{\text {vii }}$ - $\mathrm{Ag} 1-\mathrm{Ag} 1^{1}$	75.41 (7)
$\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{N} 1^{\text {iii }}$	69.96 (3)	$\mathrm{C} 1-\mathrm{Ag} 1-\mathrm{Ag} 1^{\text {viii }}$	75.41 (7)
$\mathrm{N} 1^{\text {iv }}-\mathrm{Tb} 1-\mathrm{N} 1^{\text {iii }}$	139.92 (7)	C1 ${ }^{\text {vii }}$ - $\mathrm{Ag} 1-\mathrm{Ag} 1^{\text {viii }}$	104.59 (7)
$\mathrm{N} 1-\mathrm{Tb} 1-\mathrm{N} 1{ }^{\text {iii }}$	72.81 (14)	Ag1 $1^{\text {i }}$ - $\mathrm{Ag} 1-\mathrm{Ag} 1^{\text {viii }}$	180.0
$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Tb} 1-\mathrm{N} 1^{\text {ii }}$	133.26 (9)	$\mathrm{C} 1-\mathrm{Ag} 1-\mathrm{Ag} 1^{\text {ix }}$	75.41 (7)
$\mathrm{O} 1^{\text {iiii }}-\mathrm{Tb} 1-\mathrm{N} 1^{\text {ii }}$	69.96 (3)	$\mathrm{C} 1{ }^{\text {vii }}$ - $\mathrm{Ag} 1-\mathrm{Ag} 1{ }^{\text {ix }}$	104.59 (7)
$\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{N} 1^{\text {ii }}$	69.96 (3)	Ag ${ }^{\text {i }}$ - $\mathrm{Ag} 1-\mathrm{Ag} 1^{\text {ix }}$	60.0
$\mathrm{N} 1^{\text {iv }}-\mathrm{Tb} 1-\mathrm{N} 1^{\text {ii }}$	93.48 (18)	Ag1 $1^{\text {viii }} \mathrm{Ag} 1-\mathrm{Ag} 1^{\text {ix }}$	120.0
$\mathrm{N} 1-\mathrm{Tb} 1-\mathrm{N} 1^{\text {ii }}$	72.81 (14)	$\mathrm{C} 1-\mathrm{Ag} 1-\mathrm{Ag} 1^{\text {x }}$	104.59 (7)
$\mathrm{N} 1^{\text {iii }}$-Tbl- $1^{\text {ii }}$	72.81 (14)	$\mathrm{C} 1^{\mathrm{vii}}-\mathrm{Ag} 1-\mathrm{Ag} 1^{\mathrm{x}}$	75.41 (7)
$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Tb} 1-\mathrm{N} 1^{\text {v }}$	69.96 (3)	$\mathrm{Ag} 1^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{Ag} 1^{\mathrm{x}}$	120.0
$\mathrm{O} 1^{\mathrm{iii}}-\mathrm{Tb} 1-\mathrm{N} 1^{\mathrm{V}}$	69.96 (3)	$\mathrm{Ag} 1^{\text {viii }}-\mathrm{Ag} 1-\mathrm{Ag} 1^{\mathrm{x}}$	60.0
$\mathrm{O} 1-\mathrm{Tb} 1-\mathrm{N} 1^{\text {v }}$	133.26 (9)	$\mathrm{Ag} 1^{\text {ix }}-\mathrm{Ag} 1-\mathrm{Ag} 1^{\mathrm{x}}$	180.0
$\mathrm{N} 1^{\text {iv }}-\mathrm{Tb} 1-\mathrm{N} 1^{\mathrm{v}}$	72.81 (14)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Tb} 1$	167.0 (4)
$\mathrm{N} 1-\mathrm{Tb} 1-\mathrm{N} 1^{\text {v }}$	93.48 (18)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{Ag} 1$	180.0 (4)
$\mathrm{N} 1^{\text {iii }}$-Tb1- $\mathrm{N}^{\text {V }}$	139.92 (7)	Tb1-O1-H1	116.5

Symmetry codes: (i) $-y, x-y-1, z$; (ii) $-x+y+2,-x+1, z$; (iii) $-y+1, x-y-1, z$; (iv) $-x+y+2,-x+1,-z+1 / 2$; (v) $x, y,-z+1 / 2$; (vi) $-y+1$, $x-y-1,-z+1 / 2$; (vii) $-x+1,-y,-z$; (viii) $-y+1, x-y, z$; (ix) $-x+y+1,-x, z$; (x) $-x+y+1,-x+1, z$.

Fig. 1

supplementary materials

Fig. 2

